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Two-dimensional, unsteady, compressible flow fields produced by the interactions
between a single vortex or a pair of vortices and a shock wave are simulated
numerically. The Navier–Stokes equations are solved by a finite difference method.
The sixth-order-accurate compact Padé scheme is used for spatial derivatives, together
with the fourth-order-accurate Runge–Kutta scheme for time integration. The detailed
mechanics of the flow fields at an early stage of the interactions and the basic nature
of the near-field sound generated by the interactions are studied. The results for both
a single vortex and a pair of vortices suggest that the generation and the nature of
sounds are closely related to the generation of reflected shock waves. The flow field
differs significantly when the pair of vortices moves in the same direction as the shock
wave than when opposite to it.

1. Introduction
Attention has been given to the interaction between shock waves and vortices

because vortices are building blocks of supersonic turbulent flows. The interaction of
shock waves with turbulent flows is known to be one of the major sources of noise,
and so closely related to a variety of aerodynamic problems such as the noise produced
by rockets, high-speed aircraft and helicopters (Ribner 1954, 1955, 1981, 1985; Tam
1995; McCroskey 1995). A number of studies have been performed experimentally
(Hollingsworth & Richards 1955; Dosanjh & Weeks 1965), theoretically (Lighthill
1953; Hollingsworth & Richards 1956; Weeks & Dosanjh 1967; Ting 1974; Ribner
1985), and computationally (Pao & Salas 1981; Bayliss & Maestrello 1981; Zang,
Hussaini & Bushnell 1984; Meadows, Kumar & Hussaini 1991), among others.

Hollingsworth & Richards (1955) showed experimentally that when a columnar
vortex passes through a planar shock wave, a cylindrical acoustic wave appears with
a portion cut off by the shock wave. They observed that the acoustic wave consists of
alternating compressions and rarefactions. Later, Hollingsworth & Richards (1956)
predicted by linearized analyses that the acoustic wave is composed of four alternating
compression and rarefaction regions (quadrupolar nature). Using a spark schlieren
and Mach–Zehnder interferometer, Dosanjh & Weeks (1965) measured experimentally
the circumferential distribution of pressure of the acoustic wave and verified the
prediction of Hollingsworth & Richards. These experimental results of Hollingsworth
& Richards (1955) and Dosanjh & Weeks (1965) were obtained for the interaction of
a shock wave with a single, two-dimensional vortex.

Using a shadowgraph technique, Minota (1993) studied experimentally the inter-
action of a spherical shock wave with a vortex ring, which were moving in opposite
directions. She observed the complex structure of the shock wave distortion: diffrac-
tion, refraction, branching and focusing. Though direct information on the acoustic
sound generated by the interaction was not provided, the mechanism of the shock
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wave–vortex ring interaction observed by Minota may be closely related to the sound
generation. Similar experimental results for a shock wave–vortex ring interaction have
also been reported by Szumowski & Sobieraj (1996).

Both experiments (Naumann & Hermanns 1973; Minota 1993) and computations
(Ellzey et al. 1995; Guichard, Vervisch & Domingo 1995) show that an initially
planar shock wave deforms significantly through the interaction with a vortex. This
deformation is also implicit in a successful linear theory (Ribner 1985), and has been
explicitly calculated by Filotas (1967). Some other linear theories (Hollingsworth &
Richards 1956; Weeks & Dosanjh 1967; Ting 1974) assume that the distortion of the
shock wave is negligibly small.

Direct numerical simulations of the far-field sound have become feasible in recent
years (Lee, Lele & Moin 1993; Colonius, Lele & Moin 1994; Mitchell, Lele & Moin
1995). In these simulations, the Navier–Stokes equations were solved by a finite
difference method. In order to precisely capture the far-field sound, the sixth-order-
accurate compact Padé scheme (Lele 1992) was used for spatial derivatives, together
with the third-/fourth-order-accurate Runge–Kutta scheme for time integration. Also,
the computational domains extended to cover the acoustic far field, using stretched
meshes. For the case of the interaction of a shock wave with vortices, fine meshes
must be concentrated near the shock wave in order to describe adequately the shock
structure. Thus, the direct simulation of the far-field sound requires much finer
resolution, and thus many more grid points, than for the cases without shock waves,
resulting in an increase in the memory storage and computation time; even with the
use of stretched meshes, the simulation is often limited to the near field.

Guichard et al. (1995) studied the flow field in a mixing zone produced by the inter-
action between a single vortex or a pair of vortices and a shock wave of Mach number
1.2. They solved the unsteady compressible Navier–Stokes equations using a sixth-
order Padé spatial discretization and a third-order-accurate Runge–Kutta method
for time-integration. Their results showed the distortion of the shock wave and the
formation of triple points through the interaction. They also showed that the patterns
of the shock wave distortion are affected by the self-induced translational motion of
the vortex pair with respect to the shock wave. Little information on the sound gen-
eration was provided except for the shock wave distortion. Ellzey et al. (1995) studied
the interaction between a shock wave and a single vortex. The unsteady compressible
Euler equations were solved by a fourth-order-accurate finite difference algorithm (the
flux-corrected transport algorithm). They examined the effects of strengths of both a
shock wave and a vortex, and showed that for the case of a strong shock wave the
transmitted shock structure results in a Mach reflection while for the case of a weak
shock wave it is a regular reflection. They also showed that through the interaction the
precursor wave appears first, and then the second acoustic wave follows. Both waves
showed a quadrupolar nature. Meadows & Caughey (1996) studied the flow field gen-
erated by the interaction between a shock wave and a vortex ring. The axisymmetric
Euler equations were solved by a third-order-accurate shock-capturing scheme (ENO
scheme). They observed that the shock wave is deformed by the interaction and that
the shock deformation leads to the generation of acoustic waves and contact surfaces.

The purpose of this paper is to study, using direct Navier–Stokes simulations, the
detailed mechanics of the flow field produced by the interactions between a single
vortex or a pair of vortices and a shock wave, and to increase our understanding of
the near-field sound generated by the interactions. First, we examine the basic nature
of the sound pressure field for the case of a single vortex, which is one of the most
simplified models of shock–turbulent flow interaction. We also simulate a flow with
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Figure 1. Schematic diagram of the flow model.

the same shock and vortex Mach numbers as those in the experiments of Dosanjh &
Weeks (1965) and compare the result with the experimental results and the theoretical
results of Ribner (1985) and the inviscid computational results of Ellzey et al. (1995).
We then examine the basic nature of the sound pressure field for the case of a pair of
vortices, as an example of a somewhat more complex flow field. Based on the results
for a single vortex, we will discuss the results for a vortex pair. The effects of the
strengths of both shock waves and vortices are also examined.

2. Mathematical formulation and numerical procedure
A schematic diagram of flow model is presented in figure 1. We adopt a coordinate

system which moves with the shock wave. The computational domain is prescribed
to be rectangular (xdwn 6 x 6 xup,−yb 6 y 6 yb), and the shock wave is assumed to
be fixed at x = 0. In this study, the length scale is non-dimensionalized by the core
radius R of the vortex. Vortices are located initially at (xv, yv) with yv = 0 for a single
vortex and at (xv,±yv) for a pair of vortices. The vortices move from right to left with
respect to the shock wave.

The two-dimensional, compressible Navier–Stokes equations are solved by a finite
difference method. For spatial derivatives, a sixth-order-accurate compact Padé scheme
(third-order accurate at the boundaries) proposed by Lele (1992) is adopted. The
fourth-order Runge–Kutta scheme is used for time-integration. Non-reflecting bound-
ary conditions (Poinsot & Lele 1992) are used at x = xdwn for the subsonic outflow.
The flow quantities at the supersonic inlet (x = xup) are fixed. Periodic boundary con-
ditions are imposed at y = ±yb. A non-uniform mesh system is applied in this study
and, following the suggestion of Lele (1992), more than seven points are distributed
within the shock wave in order to precisely capture it.

For the case of the interaction of a shock wave with a single vortex, the vortex is
assumed to have the following velocity distributions initially (Taylor 1918):

tangential velocity: uθ(r) = Mvr exp[(1− r2)/2],

radial velocity: ur = 0.
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Therefore, the vorticity distribution is given by

ω(r) = Mv(2− r2) exp[(1− r2)/2].

In the above expressions, the velocity components are normalized by the sound
velocity a∞ upstream of the shock wave. The Mach number Mv of the vortex is
defined by Mv = uθmax/a∞, where uθmax is the maximum tangential velocity. The
following conditions are assumed for the initial distributions of the pressure and the
density:

p/ργ = constant,

dp/dr = ρu2
θ/r.

As a result, the pressure distribution is expressed by

p(r) =
1

γ

[
1− γ − 1

2
M2

v exp(1− r2)

]γ/(γ−1)

,

ρ(r) =

[
1− γ − 1

2
M2

v exp(1− r2)

]1/(γ−1)

.

Here the density ρ and the pressure p are normalized by ρ∞ and the sound velocity a∞,
where the subscript ∞ denotes the quantity upstream of the shock wave. The symbol
γ denotes the ratio of specific heats and is fixed to be 1.4. The initial distributions of
flow quantities around the vortex are presented in figure 2 for Mv = 0.25 (solid line)
and 0.5 (dashed line). It should be noted that the total circulation of this vortex is zero
and, as seen from figure 2, the effect of the vortex is negligibly small beyond r = 4.
This vortex is adopted in this study such that the fixed upstream boundary conditions
at x = xup as well as the periodic boundary conditions at y = ±yb are guaranteed in
a finite computational domain. A similar vortex with zero total circulation had been
adopted by Ellzey et al. (1995). The initial flow field prescribed above is not an exact
solution of the Navier–Stokes equations. However, the acoustic transients associated
with the initial condition were found to be negligibly small compared with the sound
pressure field produced by the shock–vortex interaction.

For the case of the interaction with a pair of vortices, each vortex is assumed to
have the same nature as above except for the sense of rotation, and the initial flow
field is prescribed by the superposition of the flow fields produced by each single
vortex.

In this study, the computational domain is prescribed as follows:

upstream boundary: xup = 8.0,

downstream boundary: xdwn = −20.0,

upper and lower boundaries: ±yb = ±12.0,

initial locations of vortices: xv = 2.0, yv = 0 for a single vortex,

xv = 2.0, yv = 2.0 for a pair of vortices.

As noted before, the effect of the vortex is negligibly small beyond r = 4. Therefore,
for the case in which the initial distance between the two vortices is larger than 8,
the vortices may not behave as a pair; the prescribed initial distance between the two
vortices may be considered as a moderate choice.

The number of grid points is 1044 (x-direction)×1170 (y-direction). The spacing
near the shock wave (∆xs,∆ys) is ∆xs/R = 0.0025 and ∆ys/R = 0.0025, while the
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Figure 2. Initial distributions of flow quantities around a vortex for Mv = 0.25 (solid line) and
Mv = 0.5 (dashed line). (a) Tangential velocity Uθ , (b) vorticity ω, (c) pressure p, (d) density ρ.

Ms Mv Re

Case A 1.2 0.5 400
B 1.2 0.25 400
C 1.2 0.25 800
D 1.05 0.5 400
E 1.05 0.25 400
F 1.05 0.25 800
G 1.29 0.39 800

Table 1. Parameters of shock wave and vortices used for the simulations.

spacing near the boundary (∆xb,∆yb) is ∆xb/R = 0.14 and ∆yb/R = 0.07. The
time step is ∆t/(R/a∞) = 1.75 × 10−4. The numerical accuracy for these spatial and
temporal resolutions has been confirmed and typical results for the numerical tests
will be presented in the following section (figures 9 and 10).

The Mach number of a shock wave (Ms), defined by Ms = u∞/a∞, is prescribed to
be either 1.05 or 1.2. As will be seen later, through the interaction with the vortices
the shock wave shows a Mach reflection when Ms = 1.2 and a regular reflection when
Ms = 1.05. The Mach number of a vortex (Mv) is 0.25 or 0.5. The Reynolds number
is defined by Re = ρ∞a∞R/µ∞ and is prescribed to be either 400 or 800. The Prandtl
number, Pr, is assumed to be constant with a value of 0.75. The combinations of the
parameters used for the simulations are listed in table 1 (Cases A to F).
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In addition, a simulation at the same combination of Ms and Mv as that in the
experiment of Dosanjh & Weeks (1965) is performed (Case G in table 1). In the
experiment, a shock wave passed over an inclined airfoil and created a starting
vortex. The shock wave propagated to the end of the shock tube, and, after reflecting,
it interacted with the vortex. The shock Mach number was 1.29 and the vortex Mach
number was 0.39. The Reynolds number in the experiment was of order 160 000,
which is 200 times that in the present simulation, where Re = 800.

3. Results for the case of a single vortex
In this section, computational results for the case of shock–single vortex interaction

are presented. First, in § 3.1, characteristic features of flow fields and sounds, generated
by the interaction, are discussed. It is shown that the generation and nature of the
sound waves are related to the deformation and reflection of shock waves. Effects of
the shock and vortex Mach numbers and the Reynolds number are also discussed.
Then, in § 3.2, the present computational results are compared with experiment, theory
and inviscid computational results.

3.1. Basic structure of sound generation (Cases A to F)

3.1.1. Evolution of shock–vortex interaction

A typical example of the time development of the pressure field for the case
of a single vortex interacting with a shock wave is presented in figure 3 with
Ms = 1.2,Mv = 0.25 and Re = 800 (Case C). The sound pressure ∆p is defined as
∆p = (p−ps)/ps where ps is the pressure behind the shock wave. The sense of rotation
of the vortex is anti-clockwise. In the figure, the symbol ⊕ denotes the compression
region (∆p > 0) while 	 denotes the rarefaction region (∆p < 0). The shock wave
deformation caused by the interaction is schematically presented in figure 4, where
time increases from (a) to (c). As seen from figures 3(a) and 4(a), immediately after
the beginning of the shock wave-vortex interaction, the initially planar shock wave
deforms, and a compression region and a rarefaction region appear downstream
of the shock wave (x < 0). As the interaction develops, the shock wave continues
to deform, and a new rarefaction region appears outside the compression region.
Simultaneously, a new compression region appears outside the rarefaction region
(figure 3b). This series of events shows the generation of the precursor (Ribner
1985) and its quadrupolar nature (Hollingsworth & Richards 1955, 1956; Dosanjh
& Weeks 1965). The shock wave deforms more and more with the development of
the interaction, and eventually reflected shock waves emanate from the compression
part of the incident shock wave (figures 3c and 4b). One of the reflected shock waves
(numbered as 1 in figure 4) moves upward while the other one (number 2) moves
downward. Due to the anticlockwise rotation of the vortex, the strength of shock
wave 1 is larger than that of shock wave 2; the propagation velocity of shock wave
1 is larger than that of shock wave 2. The shock wave reflection is classified as a
Mach reflection. The slip lines which emanate from the triple points (denoted by T1

and T2) are shown with dashed lines in figure 4(c). They are not captured in terms
of the pressure in figure 3. Figure 3(d) shows that a second acoustic wave also of
a quadrupolar nature (hereafter referred to as the second sound) is generated after
the precursor, and that the strong compression region of the second sound is behind
reflected shock wave 1 and the strong rarefaction region is ahead of shock wave 2.
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Figure 3. Time development of the pressure field (∆p) for the case of a single vortex. Case C. The
contour levels are from ∆pmin = −0.48 to ∆pmax = 0.16 with an increment of 0.0108. (a) t = 1.0,
(b) t = 2.0, (c) t = 4.0, (d) t = 6.0.

3.1.2. Spatial distribution of sound pressure

In figure 5(a) distributions of the sound pressure ∆p are plotted against the
distance r from the vortex centre for a fixed value of θ = −45◦, and in figure 5(b)
the circumferential variations of ∆p of the precursor (r = 6.0, solid line) and the
second sound (r = 3.7, dashed line) at t = 6.0 are plotted. (For the coordinates (r, θ),
see figure 1.) As seen from figure 5(a), both the precursor and the second sound
propagate radially from the vortex with time; also the peak values of ∆p of both the
precursor and the second sound decay with the radial distance r. Figure 5(b) shows
that the circumferential variation of the sound pressure (quadrupolar nature) of the
second sound is opposite in sign to that of the precursor, in agreement with the Euler
results of Ellzey et al. (1995).
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Figure 4. Temporal variation of shock wave deformation due to the interaction with a single
vortex. Case C. T1 and T2 denote the triple points. Time increases from (a) to (c).

3.1.3. Sound wave evolution relative to shock wave reflection

The characteristic nature of the sounds and their relation to the reflected shock
waves for the case of a single vortex are schematically shown in figure 6(a). Presented
in figure 6(b) is a shadowgraph of a flow field for Case C, which is obtained from the
Laplacian of the density, ∇2ρ (= ∂2ρ/∂x2+∂2ρ/∂y2). As was shown in figure 3, through
the shock–vortex interaction, the precursor appears first, and then the two reflected
shock waves are generated; the precursor is observed ahead of the two reflected shock
waves in figure 6(b). The sound pressure fields around the two reflected shock waves
are different as seen from figure 6(a). In the positive y-plane, the rarefaction region
of the precursor and the compression region of the second sound are respectively
located ahead of and behind reflected shock wave 1. On the other hand, in the
negative y-plane, the rarefaction region of the second sound is ahead of reflected
shock wave 2, and the compression region of the precursor is further ahead of the
rarefaction region of the second sound; the compression region behind the reflected
shock wave 2 is related neither to the precursor nor to the second sound. Here, a
question arises: does the compression region behind reflected shock wave 2 have any
relation to the sound generation? A clue to the answer lies in the sound pressure field
generated by a pair of vortices interacting with a shock wave. As shown later in § 4.2
(for example, figures 17b and 20), a similar sound pressure field to that in the negative
y-plane of figure 6(a) is generated when a pair of vortices collides with a shock
wave, and there the third sound is generated behind the (merged) reflected shock
wave. The third sound generated by the pair of vortices has the same circumferential
distribution of ∆p as the precursor. This result strongly suggests that in the case of
a single vortex, as in the case of the pair of vortices colliding with the shock wave,
the third sound may be generated in the course of time and the compression region
behind reflected shock wave 2 may form a part of the third sound which has the same
quadrupolar nature as the precursor. Unfortunately, the computational domain in this
study is not large enough to simulate the entire process of the generation of the third
sound for a single vortex; only the compression region of the third sound behind
shock wave 2 is captured. (In figure 6(a), parentheses denote regions which were not
captured in this study but expected to appear at subsequent times.) Confirmation of
the generation of the third sound and its circumferential pressure variation is left for
future work.
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Figure 5. Radial and circumferential distributions of the sound pressure ∆p. Case C. (a) Radial
distribution. θ = −45◦. ———–, t = 6.0; −−−−−, t = 8.0; – · – · –, t = 10.0. (b) Circumferential
distribution. t = 6.0. ———–, r = 6.0 (precursor); −−−−−, r = 3.7 (second sound).

3.1.4. Variation with Ms, Mv and Re

The effects of the parameters (Ms, Mv , Re) on the magnitude of the sound pressure
∆p are presented in figure 7, where the peak value of the sound pressure, ∆pm, of the
precursor measured at θ = −45◦ is plotted. As an example, ∆pm for Case C at t = 6.0
is shown by an arrow in figure 5. We can see from figure 7 that the magnitude of
the sound pressure generated rises with an increase in Ms as well as in Mv . On the
other hand, the effect of Re seems insignificant for the values examined in this study
(Re = 400, 800), because the Reynolds number is defined based on the core radius of
the vortex, which is much larger than the shock wave thickness.

It is known (for example, Landau & Lifshitz 1984) that the decay of the sound
pressure in two-dimensional flows is inversely proportional to r1/2 in the far field. The
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computational results in figure 7 have not yet reached the r−1/2 line, indicating that
the computational domain in this study is not large enough to capture the far-field
sound.

Computational shadowgraphs for different combinations of Ms and Mv are pre-
sented in figure 8 for Re = 400. In all the cases presented, through the shock–vortex
interaction, the precursor appears first and then the second sound follows. (As noted
before, the third sound was not captured in this study because of the insufficient
computational domain and time.) The qualitative features of the two sounds are the
same for the six cases examined. By comparing Cases A and B (figures 8 a and 8b)
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with Cases D and E (figures 8c and 8d), we can see that the shock Mach number Ms

determines the type of shock reflection: a Mach reflection for Ms = 1.2 and a regular
reflection for Ms = 1.05. On the other hand, by comparing Case A (figure 8 a) with
Case B (figure 8b), or Case D (figure 8c) with Case E (figure 8d), we can see that the
effect of the vortex Mach number Mv appears in the strengths of the reflected shock
waves and thus in the magnitude of the sound pressure; a larger Mv leads to stronger
compressions and rarefactions.

3.1.5. Grid refinement study

As mentioned in the previous section, the spacing near the shock wave (∆xs,∆ys)
is prescribed to be ∆xs/R = 0.0025 and ∆ys/R = 0.0025. With these spacings, the
number of grid points within the shock wave is 43 for Ms = 1.2 and 124 for Ms = 1.05.
The spacing near the boundaries (∆xb, ∆yb) is prescribed to be ∆xb/R = 0.14 and
∆yb/R = 0.07. The time step is 1.75 × 10−4. In order to examine the reliability of
computational results with these resolutions, numerical tests with coarser resolutions
were performed. Typical results of the peak sound pressure ∆pm are presented in
figure 9, and those of the density field are in figure 10. In figure 9, the prime stands
for the results with a coarse resolution. In Case A, Ms and Mv are large while Ms and
Re are large in Case C. The spacings of the coarse resolution are ∆xs/R = 0.005 and
∆ys/R = 0.005,∆xb/R = 0.14 and ∆yb/R = 0.14. With these spacings, the number
of grid points within the shock wave is 10 for Ms = 1.2 and 39 for Ms = 1.05. The
time step of the coarse resolution is 7.0× 10−4 in Case A′ and 1.4× 10−3 in Case C′.
As seen from figure 9, the differences of the results between the fine and the coarse
resolutions are negligibly small for the peak sound pressure ∆pm. However, the density
field for Case A′ in figure 10(b) shows that numerical oscillations take place near the
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reflected shock waves with the coarse resolution; the fine resolution is adopted in this
computation.

3.2. Comparison with experiment (Case G)

In addition to the calculations described above, a simulation was performed at the
same combination of Ms(= 1.29) and Mv(= 0.39) as in the experiment of Dosanjh &
Weeks (1965). The Reynolds number in the experiment was of order 160 000, which
is 200 times that in the present simulation (Re = 800). The present results were also
compared to the inviscid Euler simulation by Ellzey et al. (1995).

3.2.1. Overall flow structures

As a typical example of the flow field, the isopycnics (lines of constant density)
and isobars of the sound pressure at t = 10.3 are presented in figure 11(a) and 11(b),
respectively. The qualitative features of the flow field are similar to those for Ms = 1.2
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described before (Cases A, B and C). That is, through the shock–vortex interaction, a
Mach reflection occurs and two sliplines emanate from triple points which are clearly
seen in the isopycnics of figure 11(a). The sound pressure field in figure 11(b) is similar
to that of the inviscid Euler simulation of Ellzey et al.

Schlieren pictures obtained from the calculated density fields at t = 7.0 and t = 10.3
are presented in figure 12. Again we can see the two reflected shock waves and the two
sliplines emanating from the triple points. The precursor appears ahead of the reflected
shock waves and propagates radially outward from the vortex centre with increasing
time. If we compare our computational schlieren pictures in figure 12 with the experi-
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Figure 12. Computational schlieren pictures obtained from ∂ρ/∂y.
Ms = 1.29,Mv = 0.39, Re = 800. (a) t = 7.0, (b) t = 10.3.

mental schlieren picture shown in figure 2(b) of Dosanjh & Weeks (1965), we observe a
few differences, apart from the fact that the initial vortex in the experiment appears as
a spiral, while in the simulation it is circular. First, in the simulation two reflected shock
waves and two sliplines emanating from the triple points are clearly observed, but in
the experiment they are not apparent. This difference may not be due to the Reynolds
number effect, because both the present Navier–Stokes result and the inviscid Euler
result of Ellzey et al. give the Mach reflection. (Ellzey et al. did not present the
density field and thus the sliplines emanating from the triple points were not shown.)
Second, in the experiment only one acoustic wave is visible which expands radially
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Weeks 1965, + ), theory (Ribner 1985, – · – · –) and the Euler result (Ellzey et al. 1995, −−−−−).
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the pressure behind the shock wave.

outward from the vortex centre, while in the simulation three waves are observed: the
precursor and the two reflected shock waves 1 and 2. The sound pressure distributions
obtained by the inviscid Euler simulation of Ellzey et al. also showed the three waves.

3.2.2. Circumferential pressure distributions

Presented in figure 13 is the comparison of the circumferential distributions of the
pressure amplitude, (p2 − pp)/ps, among the present Navier–Stokes result, the experi-
mental result of Dosanjh & Weeks, the Euler result of Ellzey et al. and the theoretical
result of Ribner. The symbols p2 and pp denotes the pressures of the second sound
and the precursor, respectively. In the experiment, an interferogram was taken when
the radius of the ‘acoustic wave’ was approximately ten times that of the vortex core.
The density amplitude distribution around the circumference of the acoustic wave was
determined from the interferogram and converted to pressure amplitude distribution
by using the acoustic approximation, ∆p = a2∆ρ, where a is the speed of sound.
Ellzey et al. noticed that the density difference measured from the interferogram is
the difference between the amplitude of the acoustic front and the amplitude of the
precursor. They scanned the sound pressure field to determine the radii where the
amplitudes of the precursor and the second sound are respectively maximum, and
calculated the difference in the sound pressures at these radii. Their result (dashed
line) together with the results of Dosanjh & Weeks (+) and Ribner (chain-dotted
line) are replotted in figure 13 from figure 8 of Ellzey et al. (1995).
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Figure 14. Circumferential distributions of the sound pressure ∆p. t = 10.3. ———–, precursor
(r = 10.8); −−−−−, the second sound (r = 8.8).

As the flow fields in the schlieren pictures are different for the experiment of
Dosanjh & Weeks and the present simulation, the same definition of the radius of
the ‘acoustic wave’ as in the experiment was not possible in this study. Ellzey et al.
identified the second sound as the acoustic wave to be compared with that of Dosanjh
& Weeks. However, as seen in figure 12, it is difficult to determine definitively the
radius of the second sound from the schlieren pictures. In this study, we define the
radius of the ‘acoustic wave’ as the distance between the vortex centre and the upper
reflected shock wave measured at θ = −90◦. As seen from figures 11(b) and 12(b), the
flow field where the radius of ‘acoustic wave’ is about ten times that of the vortex core
is achieved in this simulation approximately at t = 10.3. The radii of the precursor and
the second sound were determined in the same way as in Ellzey et al. For reference,
the circumferential distributions of the sound pressure of the precursor (solid line)
and the second sound (dashed line) are presented in figure 14. As seen from figure 13,
the present Navier–Stokes result shows good agreement with the experiment. The
quantitative difference between the simulation and the experiment may be considered
not large if we take into consideration the differences of the flow field shown in
the schlieren pictures. The quantitative difference between the present Navier–Stokes
result and the Euler result is small, suggesting a small effect of the Reynolds number.

3.2.3. Discussion

At present we have no definite explanation for the differences in the schlieren
pictures for the experiment and the simulation. As one possible reason, we assumed
that the specified value of Mv = 0.39 might be too large. In the experiment, the airfoil
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angle of attack was set to provide the maximum possible vortex tangential velocity,
which yielded Mv = 0.39 when Ms = 1.29 (Weeks & Dosanjh 1967). As was seen in
figure 8, with a decrease in Mv , the strengths of the reflected shock waves become
smaller. Therefore, for a sufficiently small Mv the reflected shock waves may become
very weak, and thus it may be difficult to detect them in a schlieren picture unless
the sensitivity is very high. For such a small Mv the sliplines emanating from the
triple points may also be very weak. In order to confirm this possibility, an additional
simulation with the same shock Mach number Ms = 1.29 but with a much smaller
vortex Mach number Mv = 0.05 was performed. The result showed, as expected, that
for this small Mv the reflected shock waves and the sliplines were not detected in
a schlieren picture without much higher sensitivity than that in figure 12. However,
for this case the pressure amplitude (p2 − pp)/ps also became very small, resulting
in the large deviation of the pressure amplitude from the experiment. Therefore, the
assumption that the specified value of Mv = 0.39 might be too large was not validated.
In order to solve the discrepancy in the schlieren pictures, further computational as
well as experimental studies are required.

4. Results for the case of a pair of vortices
For the case of the interaction between a pair of vortices and a shock wave, two

types of flow fields are considered, depending on whether the pair moves, by its
self-induced velocity, in the same direction as the shock wave (hereafter referred to
as a passing vortex pair) or in the opposite direction (a collision vortex pair). In this
study, as noted in § 2, a coordinate system which moves with a shock wave is adopted
and the position of the shock wave is fixed to be x = 0. The region of a negative
x is assumed to be downstream of the shock wave. Therefore, the upper vortex is
clockwise for a collision type while the lower vortex is clockwise for a passing type.
For each type, six different combinations of Ms, Mv and Re (Case A to Case F
listed in table 1) were examined, though the Reynolds number effect was found to be
negligible as in the case of a single vortex. In computations, we used the same mesh
system as in the case of a single vortex and did not assume the symmetry of the flow
field with respect to the y = 0 plane. Nevertheless, as will be seen throughout (for
example, figures 15, 20 and 23), the results show beautiful symmetry, supporting the
numerical accuracy of this computation. In § 4.1, characteristic features of flow fields
and sounds generated for the case of a passing vortex pair are discussed. Then, in
§ 4.2, computational results for the case of a collision vortex pair are presented. For
both the generation and nature of the sounds are shown to be related not only to
the deformation and reflection of the shock wave but also to the propagation of the
reflected shock waves.

4.1. Basic structure of sound generation for a passing vortex pair

4.1.1. Initial evolution of shock–vortex interaction

A typical example of the time development of the sound pressure field for the case of
a passing vortex pair is presented in figure 15 for Case C. The shock wave deformation
caused by the interaction with the pair of vortices is schematically presented in
figure 16, where time increases from (a) to (e). As seen from figures 15(a) and 16(a),
immediately after the beginning of the interaction, a rarefaction region is produced
near the y = 0 plane while two compression regions are produced at the upper and
lower sides of the rarefaction region. Then, with the development of the interaction,
new rarefaction regions appear outside each compression region (figure 15b). As a
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Figure 16. Temporal variation of shock wave deformation due to the interaction with a passing
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result, the circumferential variation of the sound pressure, when viewed from the
mid-point between the two vortices, alternates from negative (rarefaction region just
behind the upper part of the shock wave) to positive to negative (rarefaction region
near the y = 0 plane) to positive to negative (rarefaction region just behind the lower
part of the shock wave). This is the initial circumferential variation of the precursor.
With further development of the interaction, the shock wave in the compression
regions continues to deform, and eventually two sets of reflected shock waves are
radiated: one in the upper (y > 0) region and the other in the lower (y < 0) region
(figures 15c and 16b). Each set consists of two components, which are numbered 1
and 2 for the upper set and 3 and 4 for the lower set in figure 16. The essential
mechanism of the generation of reflected shock waves 1 to 4 is the same as that in
the case of a single vortex shown in figures 3 and 4, except that the sense of rotation
of the lower vortex in this case is opposite to that of the single vortex.

4.1.2. Propagation of reflected shock waves and evolution of sound waves

With increased time, the reflected shock waves 1 and 3 move upward, while 2 and
4 move downward. As a result, the reflected shock waves 2 and 3 cross each other
(figures 15 d, e and 16 c, d), and then pass through each other (figures 15f and 16e).
As noted in the case of a single vortex, the propagation velocities of reflected shock
waves 1 and 4 are larger than those of 2 and 3, respectively, and thus 2 and 3 do not
catch up with 1 and 4.

The sound pressure field in figure 15 shows that the rarefaction region of the
precursor which is located near the y = 0 plane at initial times (figure 15 a, b) tends
to die out with increasing time (figure 15c, d), and that eventually the sound pressure
∆p near the y = 0 plane takes a small positive value. Figure 15(d) shows that
the circumferential variation of the second sound is different from the precursor.
Figure 15(d) also shows that new compression regions appear behind the rarefaction
regions of the second sound, indicating that the third sound is just being generated.
With a further increase in time, the third sound develops, and we can see from
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figures 15(e) and 15(f) that the circumferential variation of ∆p of the third sound
has the same sign as the precursor. Figure 15(f) also shows that the fourth sound is
generated and the circumferential variation of ∆p of the fourth sound is opposite in
sign to the precursor. It is worth noting in figure 15(f) that, very close to the pair of
vortices, two compression regions exist upstream and downstream of the pair, while
two rarefaction regions exist on the upper and lower sides of the pair. At first glance,
this result suggests that a fifth sound having a quadrupolar nature is generated.
However, this is not the case because these regions do not propagate radially from
the pair of vortices but instead move along with it. Therefore, for the case of a passing
vortex pair, sounds are produced four times (from the precursor to the fourth sound)
through the interaction between the shock wave and the pair of vortices.

4.1.3. Sound wave evolution relative to shock wave reflection

The characteristic nature of sound generation for the passing vortex pair mentioned
above is schematically presented in figure 17(a), where a solid circle on the y = 0 plane
denotes a small negative value of ∆p while an open circle denotes a small positive
one. It should be noted from the figure that the rarefaction regions of the precursor
and the compression regions of the second sound are respectively located ahead of
and behind reflected shock wave 1 (and 4), and that the rarefaction regions of the
third sound and the compression regions of the fourth sound are located respectively
ahead of and behind reflected shock wave 3 (and 2). This result suggests that the
generation and the nature of the sounds in this case may be closely related to the
generation of the reflected shock waves. In other words, the generation of additional
sounds may not be expected in this case because further generation of reflected shock
wave may not be expected.

4.1.4. Effects of Ms, Mv and Re

Typical examples of the sound pressure fields for different combinations of Ms, Mv

and Re are presented in figure 18: Case A in figure 18(a), Case D in figure 18(b)
and Case F in figure 18(c). By comparing the flow fields in figure 18 with that in
figure 15(d) for Case C, we can see that the essential features of the sound generation
are not affected by the parameters. In figure 18(b) for Case D, ∆p of the precursor
is largest near the y = 0 plane, which looks different from the characteristic nature
of the sound shown in figure 17(a). This is because rarefaction near the y = 0 plane
produced at an initial time of the interaction is very weak because of the weak shock
wave (Ms = 1.05) and, soon after the generation, the rarefaction region is replaced by
the compression region produced by the translational motion of the pair of vortices.
In figure 18(c) for Case F, the shock Mach number is small as in Case D, but in this
case Mv is also small; compression produced by the translational motion of the pair
of vortices is not as large as in Case D. It should be noticed that in all cases the sign
of ∆p near the y = 0 plane is not affected by the parameters.

4.1.5. Density fields visualized by shadowgraphs

Presented in figure 19 are shadowgraphs for different combinations of Ms and Mv

but for fixed values of Re = 400 and t = 9.0 we can see that for the passing vortex
pair, the reflected shock waves and the sliplines are clearly captured in shadowgraphs,
but that the existence of and the distinction between the precursor and the second
sound are not very clear. This is in contrast with the collision type shown later
(figure 28). By comparing figure 19 with figure 8 for a single vortex, we can also
see that the patterns of the reflected shock waves and the sliplines generated for the
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region.

passing type are basically determined by the superposition of those produced by each
single vortex of a pair. The strong compression region of the precursor behind the
incident shock wave, which is observed in the negative y-plane in figure 8 for the case
of a single vortex, is not produced for the passing type. In agreement with the flow
feature shown in figure 16, four triple points and thus four sliplines are observed for
Ms = 1.2 (figure 19 a, b).

4.2. Basic structure of sound generation for a collision vortex pair

In contrast with the passing vortex pair mentioned above, flow structures produced
by the interaction for a collision vortex pair, especially shock wave deformation, are
affected by the Mach numbers, and can be categorized into the following three types
depending on the combinations of Ms and Mv .
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Type I: Mild interaction without shock wave focusing. Cases B and C (Ms = 1.2
and Mv = ±0.25).

Type II: Intermediate interaction with shock wave focusing. Cases E and F
(Ms = 1.05 and Mv = ±0.25).

Type III: Strong interaction with shock wave focusing and additional expansion
waves. Case A (Ms = 1.2 and Mv = ±0.5) and Case D (Ms = 1.05 and Mv = ±0.5).

4.2.1. Type I: mild interaction (Cases B and C)

Evolution of shock-vortex interaction and propagation of reflected shock waves. A
typical example of the time development of the sound pressure field for the case of
a collision vortex pair is presented in figure 20 for Case C. The time development
of shock wave deformation caused by the interaction is schematically presented in
figure 21. As seen from figures 20(a) and 21(a), immediately after the beginning of
the interaction, a compression region is produced near the y = 0 plane while two
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rarefaction regions are produced at the upper and the lower sides of the compression
region. Then, with the development of the interaction, new compression regions
appear outside each rarefaction region (figure 20b). As a result, the circumferential
variation of the sound pressure becomes alternating. This alternating variation of ∆p
of the precursor along the circumferential direction is in contrast with that in the
passing vortex pair discussed in the previous section (figure 15b). In addition, unlike
the passing case, the compression region of the precursor near the y = 0 plane does
not tend to die out with increasing time, as is seen in figure 20(c) to 20(h). With
further development of the interaction, the shock wave in the compression region
near the y = 0 plane deforms more and more, and eventually two sets of reflected
shock waves are radiated, as seen in figures 20(c) and 21(b). Because the senses of
rotation of the two vortices are opposite to those in the passing case, reflected shock
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Figure 20. Time development of sound pressure fields for a collision vortex pair (Type I. mild
interaction). ∆p. Case C. (a) t = 1.0, (b) t = 2.0, (c) t = 3.2, (d) t = 3.8. (e) t = 5.0, (f) t = 7.0, (g)
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waves 3 and 4 in this case correspond, respectively, to 1 and 2 in the case of a single
vortex shown in figure 4. As in the passing case, reflected shock waves 2 and 3 cross
(figures 20(d) and 21(c)) and then pass through each other (figures 20(e) and 21(d)).
In contrast with the passing case, the propagation velocity of shock wave 3 is larger
than that of shock wave 1, and thus shock wave 3 approaches shock wave 1 with
further increasing time (figures 20f–h and 21e), and eventually the two shock waves
1 and 3 merge into a single, upward moving shock wave. Similarly, shock waves 2
and 4 merge into a single, downward moving shock wave. Figure 20(f) shows that
the second sound is generated after the precursor and the circumferential variation
of the second sound is in contrast with the precursor. Figures 20(f) and 20(g) show
that the third sound develops and that the circumferential variation of ∆p of the
third sound is of the same sign as the precursor. In figure 20(h), as in the passing
case, we can see two compression and two rarefaction regions which move with the
pair of vortices. Again, the compression regions exist upstream and downstream of
the pair, respectively, with two rarefaction regions on the upper and lower sides of
the pair. Therefore, for Type I, acoustic sounds are observed three times through the
shock–pair of vortices interaction.
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Sound wave evolution relative to shock wave reflection. The characteristic nature of
sound generation for the collision vortex pair for Case C is given in figure 17(b)
which shows that the rarefaction regions of the second sound and the compression
regions of the third sound are located respectively ahead of and behind the merged
reflected shock waves 1 + 3 in the y > 0 region and 2 + 4 in the y < 0 region; the
generation and the nature of the acoustic waves for the collision and the passing types
may be closely related to the generation of the reflected shock waves. The generation
of additional sounds may not be expected for Type I because further generation of
reflected shock waves as well as other sources of sounds may not be expected, in
contrast to Type III discussed later.

It should be noted that the relation between the sounds and the reflected shock
waves shown in figure 17(b) is the same as that shown in the lower half of figure 6(a)
for the case of a single vortex, if the merged shock wave 1+3 (or 2+4) in figure 17(b)
is replaced with reflected shock wave 2 in figure 6(a). This result strongly suggests
the possibility that the acoustic wave may be generated three times for the case of a
single vortex, as already noted in § 3.1.3.

4.2.2. Type II: intermediate interaction (Cases E and F)

A typical example of the time development of the flow field for the case of the
intermediate interaction is presented in figures 22 and 23 for Case F. In figure 22,
the flow fields at an early stage of the flow development are shown, and the figures
on the left-hand side are isopycnics while those on the right-hand side are isobars of
the sound pressure ∆p. The variation of the sound pressure is generally much smaller
than that of the overall pressure field near the vortices and near the shock waves.
This is especially true at an early stage of the flow development in Cases E and F
because both Ms and Mv are small. Therefore, in order to see the small variation
of the sound pressure, the contour levels of ∆p should be prescribed to be within
a certain limit so that both larger and smaller values of the sound pressure than
the prescribed range are not plotted. However, from the resulting figures obtained
by imposing this limitation on the contour levels of ∆p, it may be a little difficult
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for readers to understand the overall flow structures; mild limits are imposed on the
contour levels of the density field so that the overall flow structures can be seen from
the isopycnics. The flow fields at a later stage are shown in terms of isobars only in
figure 23. The time development of shock wave deformation caused by the interaction
for Case F is also presented schematically in figure 24.

At a very early stage of the interaction, the shock wave deformation and the
generation of the sound pressure (the precursor) are quite similar to those in Type I.
With development of the interaction, the shock wave in the compression region near
the y = 0 plane deforms, and two sets of reflected shock waves are released, as seen in
figures 22(b) and 24(b). In this case, owing to the stronger effect of the pair of vortices
than the shock wave, the shock wave diffracts more drastically than Type I and the
distance between the triple points T1 and T2 becomes shorter; the two triple points
move downward as if they were a single point (figure 24 c). Similarly, T3 and T4 move
upward as if they were a single point. With increasing time, the distance between
the triple points T1 (or T2) and T3 (or T4) becomes shorter and shorter (figure 22c),
and eventually vanishes (figures 22 d and 24 d). At that moment, the incident shock
wave and the four reflected shock waves meet at a point; that is, shock wave focusing
occurs. A similar phenomenon has been observed experimentally by Minota (1993)
and computationally by Takayama et al. (1993), both in shock wave–vortex ring
interactions. With further increasing time, shock wave 3 approaches shock wave 1
(figures 23 and 24 e), and eventually the two merge. Similarly, shock waves 2 and 4
merge. As seen from figure 23, the sounds are generated three times through the shock
wave–vortex pair interaction and, except for the appearance of shock wave focusing,
the qualitative features of the sounds generated are the same for Type I and Type II.

4.2.3. Type III: strong interaction (Cases A and D)

A typical example of the time development of the flow field at early times of the
strong interaction is presented in figure 25 for Case A. A schematic diagram of the
time development of shock wave deformation for this case is presented in figure 26.
As seen from figures 25(a) to 25(d), the flow fields at an early stage of the flow
development are quite similar to those in the previous case of Type II: the schematic
diagrams of shock wave deformation corresponding to figures 25(a) to 25(d) are the
same as figures 24(a) to 24(d) and thus omitted in figure 26. Figure 25(e) shows
that a focal region, denoted by FR in figure 26(a), is formed in this Type III case
after the shock waves focus. With further increasing time, the reflected shock waves
1 and 3, and 2 and 4, respectively, merge into combined structures (figures 25f and
26b). The flow field with the focal region presented in figures 25(f) and 26(b) is
quite similar to that produced by the focusing of a weak shock wave as observed by
Sturtevant & Kulkarny (1976) in a shock tube experiment with a reflector, though
the focusing mechanism is quite different. The shock structure in figure 25(f) and
26(b) is also quite similar to that observed by Inoue, Sakai & Nishida (1996, 1997)
in their computation of shock wave focusing induced by a projectile in a parabolic
or an accelerated motion. With a further increase in time, the reflected shock waves
approach the incident shock wave, and the focal region disappears.

Figure 27 shows sound pressure fields at later times for Case A. As the contour
levels of figure 27 are different from those of figure 25, the sound pressure field
at t = 6.0 in figure 25(f) is replotted in figure 27(a) for reference. As seen from
figure 27(b) and 26(c), in strong contrast with Type I and Type II, new rarefaction
(expansion) waves are generated in a region surrounded by the pair of vortices and
the reflected shock waves. In figure 26(c), the signs of ∆p are also plotted. RW denotes
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the rarefaction wave. The circles with arrows indicate the vortices. The rarefaction
waves propagate away from the vortices towards the reflected shock waves, and as a
result an additional rarefaction region is produced downstream of the pair of vortices
(figure 26d and 27c, d). At the same time, as seen from figure 27(c) and 27(d), the
sound pressure ∆p along the y = 0 plane ahead of the pair shows the generation of
a new rarefaction region (−16 < x < −12 in figure 27 d) after the third sound whose
sign of ∆p on the y = 0 plane is positive. As noted in the previous sections, ∆p takes
a positive value eventually both upstream and downstream of the pair of vortices.
Therefore, the generation of new rarefaction regions both upstream and downstream
of the pair of vortices suggests the possibility of the generation of the fourth sound.
Figure 27(d) suggests that the circumferential variation of ∆p of the fourth sound may
be the same as that of the second sound. Unfortunately, simulation of the further
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Figure 22. Time development of flow fields for a collision vortex pair (Type II intermediate
interaction). Case F. Isopycnics (left column) and isobars (right column). (a) t = 2.4, (b) t = 3.6, (c)
t = 4.2, (d) t = 5.0. The contour levels of isopycnics are from ∆ρmin = 0.92 to ∆ρmax = 1.42 with an
increment of 0.01. The contour levels of isobars are from ∆pmin = −0.10 to ∆pmax = 0.08 with an
increment of 0.0034 for (a) and from ∆pmin = −0.05 to ∆pmax = 0.045 with an increment of 0.0019
for (b) to (d).

development of the flow field requires a much wider computational domain, and
thus was not possible with the performance of our supercomputer system; further
confirmation of the generation of the fourth sound is left for future work. The flow
features for Case D are quite similar to those for Case A.

4.2.4. Density fields visualized by shadowgraphs

Presented in figure 28 are shadowgraphs for different combinations of Ms and Mv

but for fixed values of Re = 400 and t = 9.0. We can see that for the collision vortex



110 O. Inoue and Y. Hattori

(a)
8

4

0

–8

–4

y

–20 –16 –12 –8 4–6 0

(b)

–20 –16 –12 –8 4–6 0

PrecursorPrecursor

8

4

0

–8

–4

y

–20 –16 –12 –8 4–6 0

(c)

–20 –16 –12 –8 4–6 0

(d )

Second sound Third sound

x x

Figure 23. Time development of sound pressure fields, ∆p, at a later stage for Case F. Collision type.
Type II. (a) t = 6.6, (b) t = 8.0, (c) t = 10.0 (d) t = 13.0. The contour levels are from ∆pmin = −0.07
to ∆pmax = 0.04 with an increment of 0.001.

1

2

3 2

3

4 4

2

1

3

4

(a) (b) (c) (d ) (e)

T1, T2

T3, T4

1

2

3

4

1

Figure 24. Temporal variation of shock wave deformation. Collision type.
Type II (intermediate interaction).



Sound generation by shock–vortex interactions 111

(a)
8

4

0

–8

–4

y

(b)

(c)
8

4

0

–8

–4

y

(d )

(e)
8

4

0

–8

–4

y

( f )

–8 0 –8 0 4–4–4

x

Figure 25. Time development of sound pressure fields, ∆p, for Case A. Collision type. Type III.
(a) t = 2.4, (b) t = 3.2, (c) t = 3.4 (d) t = 3.8, (e) t = 4.6, (f) t = 6.0. The contour levels are from
∆pmin = −0.46 to ∆pmax = 0.30, with an increment of 0.004 for (a) and (b) and 0.0028 for (c) to (f).



112 O. Inoue and Y. Hattori

1

2

3

2

3

4

4

1

4

(a) (b) (c) (d ) (e)

1

FR

2

3

4

1

FR
RW

RW

Figure 26. Temporal variation of shock wave deformation after focusing. Collision type. Type III
(strong interaction). Parts (a) and (b) correspond to figure 25 (e) and 25 (f), respectively and (c) and
(d) correspond to figure 27(b) and 27 (c, d ), respectively. RW: rarefaction wave.

(a)
8

4

0

–8

–4

y

–20 –16 –12 –8 4–6 0

(b)

–20 –16 –12 –8 4–6 0

Precursor

8

4

0

–8

–4

y

–20 –16 –12 –8 4–6 0

(c)

–20 –16 –12 –8 4–6 0

(d )

Second Third

x x

Second SecondPrecursor

Figure 27. Time development of sound pressure fields at later times. ∆p. Case A. Collision type.
Type III. (a) t = 6.0, (b) t = 9.0, (c) t = 10.0, (d) t = 13.0. The contour levels are from ∆pmin = −0.20
to ∆pmax = 0.07 with an increment of 0.0034.



Sound generation by shock–vortex interactions 113

(c)

10

y 0

–10

–10 0
x

y

(a)

10

0

–10

–10 0

(d )

–10 0
x

–10 0

(b)

–0.04 0 0.20–0.02 0.40

10

0

–10

10

0

–10

Figure 28. Shadowgraphs obtained from ∇2ρ for the case of collision vortex pair.
Re = 400, t = 9.0. (a) Case A, (b) Case B, (c) Case D, (d) Case E.

pair not only the reflected shock waves and the sliplines but also the precursor and the
second sound are clearly captured in shadowgraphs, in contrast to the passing type
shown in figure 19. By carefully comparing figure 28 with figure 8 for a single vortex,
we can see that the nature of the flow fields at an early stage of flow development for
the collision type are basically determined, as in the passing type, by the superposition
of those produced by each single vortex of a pair, and that the generation of the
precursor and the second sound for the collision type is fundamentally related to the
generation of the precursor and reflected shock wave 1 for the single vortex shown
in figure 4. In agreement with the flow features shown in figures 21 and 24, two triple
points and thus two sliplines are observed for Ms = 1.2 (figure 28 a, b). This is in
contrast with the passing type shown in figure 19(a, b) where four triple points and
four sliplines are observed. It may be worth noting that additional waves, which are
found to be rarefaction waves in Type III (figure 26), are also observed for Type



114 O. Inoue and Y. Hattori

I (figure 28b) and Type II (figure 28d). The waves are not strong enough to form
rarefaction waves for Type I and Type II because of the small value of Mv .

5. Concluding remarks
By using the direct Navier–Stokes simulation, two-dimensional flow fields produced

by the interactions between a shock wave and a single vortex or a pair of vortices
were studied. The effects of the strengths of shock waves and vortices on the flow
fields are examined, and the basic nature of the near-field sound generated by the
interactions was clarified in some detail. The results showed that larger Mv as well
as Ms produce stronger compressions and rarefactions and thus larger magnitudes
of the sound pressure. The effect of the Reynolds number based on the vortex core
radius was found to be negligible, so far as the values of Re examined in this study
are concerned.

For the case of a single vortex, acoustic waves were observed twice: the precursor
and the second sound. Both sounds have a quadrupolar nature, but the circumferential
variation of the sound pressure is opposite in sign. These results are in qualitative
agreement with experimental observations (Hollingsworth & Richards 1955; Dosanjh
& Weeks 1965) as well as the computational results by the Euler simulation of
Ellzey et al. (1995). On the other hand, comparison of the present Navier–Stokes
results with the experiment of Dosanjh & Weeks (1965) revealed a few differences.
For example, in the computational schlieren pictures the precursor and two reflected
shock waves (and two sliplines emanating from the triple points) are clearly observed,
but in the experimental schlieren pictures only one acoustic wave is visible which
expands radially outward from the vortex centre. This difference may not be due to
the Reynolds number effect, because both the present Navier–Stokes simulation and
the Euler simulation of Ellzey et al. give similar results. Somewhat surprisingly, the
circumferential distributions of the pressure amplitude show good agreement between
the experiment and the simulation. At present, the discrepancy between the simulation
and the experiment remains unsolved; further computational and experimental studies
are necessary. The comparison of the present Navier–Stokes results with the Euler
results gives good agreement, suggesting the small effect of the Reynolds number in
this problem. The comparison of the flow fields of a single vortex and a vortex pair
of the collision type suggests that the third sound may be generated at later times
for the case of a single vortex. However, confirmation of the third sound requires a
much wider computational domain and thus is left for future work.

For the case of a vortex pair, the flow field produced by the interaction, and thus
the sounds generated, show different characteristic features, depending on whether
the pair moves in the same direction as the shock wave (passing type) or opposite
to it (collision type). For the case of a passing vortex pair, sounds are found to be
generated four times (from the precursor to the fourth sound). The essential features
of the flow field for the passing case were not affected by Ms and Mv .

For the case of a collision vortex pair, the flow field produced by the interaction
is found to be affected by Ms and Mv , and can be categorized into three types, so
far as the parameters used in this study are concerned. In mild interaction (Type I),
shock wave focusing does not occur, and the sounds are generated three times. In
intermediate interaction (Type II), shock wave focusing occurs but acoustic sounds
are generated three times as in Type I. The characteristic nature of the sounds in Type
II is also the same as in Type I. In strong interaction (Type III), shock wave focusing
occurs as in Type II. However, in contrast with Type II, the computational results for
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Type III suggest the possibility of the generation of the fourth sound owing to the
generation of additional rarefaction (expansion) waves.

The results for both a single vortex and a pair of vortices suggest that for shock
wave–vortex interaction problems the generation and the nature of sounds may
be closely related to the generation of (reflected) shock waves and expansion waves,
though this may not be the only mechanism responsible for the generation of acoustic
waves.

In this study, the basic nature of the near-field sounds was clarified in some detail
both for a single vortex and for a pair of vortices. The study of the nature of the
far field and the transition process from near to far fields requires a much wider
computational domain and thus is left for future work. Also planned for future work
is the confirmation of the third sound for a single vortex and the fourth sound for a
vortex pair of collision type (Type III).
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of Engineering, Nagoya University, for his kind advice and suggestions. Thanks are
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